A Trigonometria no Mundo Real!

Desenvolvida por: Jonas … (com assistência da tecnologia Profy)
Área do Conhecimento/Disciplinas: Matemática
Temática: Trigonometria aplicada a situações cotidianas

Esta atividade, desenvolvida para alunos do 8º ano do Ensino Fundamental, busca integrar a matemática com situações do cotidiano, tornando o aprendizado mais significativo e aplicável. Com foco na trigonometria, os estudantes serão divididos em pequenos grupos e desafiados a resolver problemas reais usando os conceitos aprendidos. Um exemplo prático é calcular a altura de um edifício utilizando a medida do ângulo de elevação e a distância do observador ao objeto. Essa abordagem prática visa não apenas facilitar a compreensão dos alunos sobre a trigonometria, mas também estimular suas habilidades de pensamento crítico e solução de problemas. Após a resolução dos problemas designados, cada grupo deverá apresentar suas estratégias e resultados para a classe, promovendo um ambiente de cooperação e troca de ideias. Através dessa atividade, espera-se que os alunos vivenciem a relevância da matemática e desenvolvam um entendimento mais profundo de suas aplicações pragmáticas no mundo que os rodeia.

Objetivos de Aprendizagem

Os objetivos de aprendizagem dessa atividade estão focados em proporcionar aos alunos uma compreensão prática da trigonometria, aprimorar suas habilidades de resolução de problemas e promover a cooperação entre os pares. Ao aplicar conceitos matemáticos em problemas do dia a dia, os alunos desenvolvem competências cognitivas como a interpretação de dados geométricos e a execução de cálculos concretos. Além disso, ao trabalharem em grupos, são incentivados a compartilhar ideias, negociar soluções e mediar conflitos, fortalecendo suas habilidades sociais e a capacidade de trabalho colaborativo.

  • Aplicar conceitos de trigonometria em problemas reais.
  • Demonstrar habilidades de resolução de problemas matemáticos.
  • Colaborar eficazmente em grupos para resolver problemas.
  • Apresentar estratégias de resolução e resultados de forma clara.

Habilidades Específicas BNCC

  • EF08MA11: Estabelecer relações entre as representações gráficas das funções trigonométricas e as situações de seu uso em problemas reais, como calculo de altura de edifícios usando a tangente.
  • EF08MA12: Resolver problemas envolvendo razões trigonométricas no triângulo retângulo, em contextos que incluam a resolução de problemas reais.

Conteúdo Programático

O conteúdo programático da atividade foca na aplicação de conhecimentos de trigonometria, especificamente em como esse ramo da matemática pode ser usado para medir alturas e distâncias usando ângulos. Ao relacionar conceitos teóricos da matemática com suas aplicações práticas, os alunos conseguem perceber a utilidade desses conhecimentos em situações do cotidiano. Além disso, a atividade reforça a importância do cálculo preciso e da interpretação de dados geométricos, habilidades essenciais para o desenvolvimento acadêmico e pessoal dos estudantes no contexto escolar.

  • Introdução aos conceitos básicos de trigonometria.
  • Propriedades das razões trigonométricas em triângulos retângulos.
  • Aplicação prática das razões trigonométricas.

Metodologia

A metodologia empregada nesta aula está centrada na aprendizagem ativa e engajamento através de problemas reais. Os alunos serão divididos em grupos para resolver um problema de aplicação de trigonometria no cotidiano. Essa dinâmica promove a colaboração, o debate e a negociação de soluções, fundamental para o desenvolvimento das habilidades sociais dos alunos. Participar de atividades que exigem a prática de cálculos e a interpretação de resultados permite a interação com conceitos matemáticos de maneira concreta e significativa. Com apresentações de resultados e estratégias, os alunos exercitam a comunicação e a troca de conhecimentos.

  • Divisão em grupos para resolução de problemas.
  • Aplicação de conceitos teóricos em situações práticas.
  • Apresentação de resultados e estratégias à turma.

Aulas e Sequências Didáticas

O cronograma da atividade será estruturado em uma única aula de 60 minutos. Nesta aula, os alunos serão introduzidos ao conceito de trigonometria aplicada, formarão grupos, escolherão problemas para resolver e, posteriormente, apresentarão suas soluções ao restante da turma. Essa estrutura foi cuidadosamente planejada para garantir o engajamento ativo, proporcionar tempo suficiente para discussão e resolução de problemas e, ao final, compartilhar aprendizados com a classe, favorecendo a troca de conhecimento e o enriquecimento coletivo do entendimento matemático.

  • Aula 1: Introdução ao problema prático, formação de grupos, resolução e apresentação dos resultados.
  • Momento 1: Abertura e Introdução ao Tema (Estimativa: 10 minutos)
    Introduza a aula destacando a importância da trigonometria no cotidiano. Explique brevemente como a trigonometria pode ser usada para resolver problemas reais, como calcular a altura de um edifício a partir de um ponto distante. É importante que os alunos percebam a relevância do conteúdo que será trabalhado. Permita que os alunos compartilhem quaisquer experiências que possam ter com o uso de matemática em situações práticas.

    Momento 2: Formação de Grupos e Apresentação do Problema Prático (Estimativa: 10 minutos)
    Divida a turma em grupos de 4 a 5 alunos. Entregue a cada grupo uma folha com um problema que envolve o cálculo da altura de um edifício com base no ângulo de elevação e a distância até o prédio. Explique os recursos disponíveis, como calculadoras científicas e papel quadriculado. Oriente os grupos a começarem a discussão sobre como abordar o problema.

    Momento 3: Resolução do Problema em Grupo (Estimativa: 25 minutos)
    Os alunos devem trabalhar em seus grupos para aplicar os conceitos de trigonometria. Passe entre os grupos, observe como cada um aborda o problema, e ofereça sugestões se necessário, sem dar a solução diretamente. Verifique se todos os membros do grupo estão participando. Incentive o uso do papel quadriculado para visualizar o problema. É importante que cada grupo documente suas estratégias e cálculos.

    Momento 4: Apresentação dos Resultados (Estimativa: 15 minutos)
    Cada grupo deve apresentar suas estratégias de resolução e os resultados obtidos para a classe. Estimule que os alunos expliquem claramente como chegaram às suas conclusões. Promova um ambiente colaborativo, permitindo e incentivando perguntas e sugestões dos outros grupos. Avalie as apresentações com base na clareza, eficiência da estratégia e cooperação entre os membros do grupo. Forneça feedback construtivo para cada grupo.

    Estratégias de inclusão e acessibilidade:
    Embora nenhum aluno em sua turma tenha condições específicas, é sempre bom estar preparado para necessidades de inclusão. Certifique-se de que todos os alunos compreendam as instruções, utilizando recursos visuais e exemplos práticos para reforçar conceitos. Mantenha uma abordagem amigável, garantindo que todos os alunos possam contribuir e se sentir valorizados durante a atividade. Disponibilize materiais de apresentação em diferentes formatos, como slides para aqueles que possam preferir a visualização ao invés de apenas a exposição verbal. Esteja disponível para auxiliar alunos que demonstram dificuldades, oferecendo apoio extra conforme necessário, para garantir uma experiência de aprendizagem significativa para todos.

Avaliação

Para a avaliação, propõe-se uma abordagem formativa, que compreende a observação contínua do envolvimento dos alunos durante a atividade, a análise das estratégias desenvolvidas em grupo e as apresentações finais. Entre as opções de avaliação estão a autoavaliação, permitindo aos alunos refletir sobre seu próprio progresso e contribuição no grupo, e a rubrica de participação em grupo, que considera a colaboração, comunicação e abordagem de resolução. Os critérios incluem a capacidade de aplicar conceitos trigonométricos corretamente, a eficácia nas soluções apresentadas e a clareza na comunicação dos resultados. Exemplo prático: ao apresentar os resultados dos cálculos de altura de um edifício, são observadas a precisão dos cálculos, a clareza da apresentação e a participação equilibrada dos membros do grupo.

  • Autoavaliação individual do progresso e contribuição.
  • Uso de rubrica para avaliar a participação em grupo.
  • Observação contínua do envolvimento durante a atividade.

Materiais e ferramentas:

Diversos recursos serão utilizados para a realização da atividade, buscando enriquecer o aprendizado e facilitar a compreensão dos conceitos envolvidos. Calculadoras científicas permitirão aos alunos realizar os cálculos com precisão. Folhas de papel quadriculado proporcionarão um suporte individual para cada grupo organizar seus cálculos e desenhos necessários para a resolução dos problemas. Com isso, espera-se que os alunos possam explorar os conceitos de maneira prática e visual, conectando-se mais profundamente com as aplicações da trigonometria.

  • Calculadoras científicas para auxiliar nos cálculos.
  • Folhas de papel quadriculado para a organização dos problemas.
  • Materiais de apresentação, como cartolinas ou slides.

Inclusão e acessibilidade

Sabemos que atender às necessidades de todos os alunos é um desafio diário para os professores, mas garantir a inclusão e acessibilidade é fundamental para um ambiente de aprendizagem equitativo. Para tal, devem-se orientar práticas que promovam acessibilidade para todos os alunos, mesmo que não apresentem deficiências. Recomenda-se que os materiais visuais utilizados, como slides ou cartolinas, contenham fontes grandes e contrastantes, facilitando a leitura a partir de qualquer posição na sala. Além disso, o professor pode garantir que todos os alunos participem ativamente das discussões e apresentações, incentivando a inclusão de todas as vozes. Por fim, promover uma cultura de respeito e apoio mútuo, onde cada estudante se sinta seguro para expressar suas ideias e dúvidas, contribui consideravelmente para a aprendizagem de todos.

  • Uso de materiais visuais com fontes grandes e contrastantes.
  • Promoção ativa equânime de vozes durante discussões e apresentações.
  • Estabelecimento de uma cultura de respeito e apoio mútuo na sala de aula.

Todos os planos de aula são criados e revisados por professores como você, com auxílio da Inteligência Artificial

Crie agora seu próprio plano de aula
Você ainda tem 1 plano de aula para ler esse mês
Cadastre-se gratuitamente
e tenha livre acesso a mais de 30.000 planos de aula sem custo